14.
O PUNHO E A MÃO
14.1.
CONSIDERAÇÕES ANATÔMICAS
Todos
os elos que compõem o membro superior podem, em última análise, ser
relacionados ao asseguramento da função de movimentos especializados
da mão. Tarefas motoras finas, como as executadas por um
neurocirurgião, são realizadas com a mesma estrutura anatômica usada
por um carateca para partir fibras de madeira e tijolos, uma tarefa
grosseira cujo principal requisito é a transmissão de força.
A
mão é composta de 27 ossos e mais de 20 articulações. Os ossos,
divididos em três grupos, são os oito carpais, cinco metacarpais e
três fileiras de falanges.
Os
ossos do carpo, classificados como irregulares, são o escafóide,
semilunar, piramidal e piriforme, trapezóide, trapézio, capitato e
uncinado. Os cinco ossos do metacarpo têm uma base proximal, um corpo e
uma cabeça distal. As três fileiras de falange são as fileiras
proximal, média e distal. O polegar não possui uma falange média.
O
punho é constituído pelas articulações radiocárpica e
intercárpicas. A primeira, uma articulação elipsóide, é formada
pela extremidade distal do rádio, um disco articular e três dos quatro
ossos na fileira proximal do carpo. A articulação radiocárpica é
separada da fileira proximal de carpais por um disco articular
fibrocartilagíneo. Os três carpais envolvidos formam uma face convexa
lisa que recebe a extremidade distal côncava do rádio e admite
movimentos planares (anaxiais).
As
articulações intercárpicas são divididas em três grupos: as
articulações entre os ossos escafóide, semilunar, piramidal e
isiforme; as articulações entre o capitato, uncinado, trapezóide e
trapézio; e a articulação mediocárpica, entre as fileiras proximal e
distal.
Os
ligamentos da articulação radiocárpica incluem uma extensa cápsula
articular e o radiocárpico palmar, radiocárpico dorsal, colateral
ulnar do carpo e colateral radial do carpo. As articulações
intercárpicas são sustentadas por uma complexa rede de ligamentos.
As
articulações carpometacárpicas incluem as dos quatro dedos mediais e
a do polegar. A articulação carpometacárpica do polegar é formada
pela base do primeiro metacarpal e o trapézio. Contudo, as
articulações carpometacárpicas dos quatro dedos mediais são
sinoviais planas. A articulação carpometacárpica do polegar tem uma
cápsula articular relativamente frouxa que é reforçada pelos
ligamentos carpometacárpicos palmar (radial) e dorsal (anterior e
oblíquo posterior) laterais do polegar. Os ligamentos das
articulações carpometacárpicas são os carpometacárpicos dorsais,
carpometacárpicos palmares e carpometacárpicos interósseos.
As
extremidades distais dos metacarpais formam articulações elipsóides
com as extremidades proximais das falanges proximais, as articulações
metacarpofalângicas (MF).
14.2.
MOVIMENTOS ARTICULARES
A
articulação radiocárpica produz circundução. A articulação
permite todos os movimentos, exceto rotação em tomo de seu eixo
longitudinal. O movimento no plano frontal inclui a abdução, às vezes
referida como desvio radial ou flexão radial, e adução, ás vezes
referida como desvio ulnar ou flexão ulnar. No plano sagital, o punho
se estende e se flete. A flexão faz com que a palma se aproxime da face
do antebraço. O movimento das articulações intercárpicas é
desprezível.
As
articulações carpometacárpicas são de dois tipos: a do polegar é
uma articulação selar, permitindo movimentos extensos e peculiares. As
demais são do tipo plano. A segunda e terceira articulações
carpometacárpicas não permitem praticamente nenhum movimento; a quinta
e, até certo ponto, a quarta permitem uma leve flexão, movimento
observado quando se põem as mãos em concha.
A
articulação MF do polegar é uma articulação em dobradiça que
admite apenas flexão e extensão. As outras quatro articulações MF
são elipsóides, com capacidades de flexão-extensão e
abdução-adução. A abdução geralmente é referida como desvio
radial ou flexão radial e representa o movimento dos dedos para longe
do dedo médio. O movimento inverso, adução, geralmente é denominado
desvio ulnar ou flexão ulnar.
Todas
as articulações IF são ginglimos que permitem apenas a flexão e a
extensão. Estruturas ligamentosas previnem hiperextensão destas
articulações
14.3.
MÚSCULOS E MOVIMENTOS DO POLEGAR E OUTROS DEDOS
A
flexão do punho é predominantemente uma função da ação sincrônica
do flexor radial do carpo, flexor ulnar do carpo e flexor superficial
dos dedos. Foi relatado que o flexor profundo dos dedos não exerce um
papel na flexão do punho, embora sua posição sugira uma possível
contribuição, assim como as posições do palmar longo e flexor longo
do polegar. Esses músculos, juntamente com o pronador redondo, compõem
o que é denominado grupo flexor superficial do antebraço.
Há
três extensores principais do punho: extensor radial longo do carpo,
extensor radial curto do carpo e extensor ulnar do carpo. Durante o
cerramento do punho, o extensor radial longo do carpo é muito ativo, ao
passo que o extensor radial curto do carpo é quase inativo. Em virtude
de sua posição, os extensores dos dedos, do dedo mínimo, longo do
polegar e do indicador são considerados extensores auxiliares do punho.
Um grupo extensor superficial do antebraço é composto pelos extensores
radiais longo e curto do carpo, extensor dos dedos, extensor do dedo
mínimo, extensor ulnar do carpo e os músculos da articulação do
cotovelo braquiorradial e ancôneo.
Os
desvios radial e ulnar (abdução e adução) resultam da contração
sinérgica de músculos que são responsáveis primariamente pela
flexão e extensão do punho. A abdução resulta da contração do
flexor e extensor radiais do carpo. O extensor dos dedos e flexor dos
dedos são ativos e podem contrair-se com uma adução extrema do punho
ou amplitude do movimento de abdução. A abdução pode ser auxiliada
pelo grupo extensor profundo (abdutor longo do polegar, extensor curto
do polegar, extensor longo do polegar, extensor do indicador e supinador) devido às suas linhas de tração.
Os
músculos intrínsecos da mão são subdivididos em três grupos os do
dedo polegar, encontrados no lado radial e responsáveis pela eminência
tenar; os do dedo mínimo, encontrados no lado ulnar e responsáveis
pela eminência hipotenar; e os no meio da mão e entre os metacarpais.
Os pequenos músculos intrínsecos da mão estão associados aos
movimentos dos dedos. Dividem-se em três grupos - os quatro lumbricais,
os quatro interósseos dorsais e os três interósseos palmares. Os
lumbricais se localizam na palma, e os interósseos, entre os
metacarpais. Todos servem para fletir as falanges proximais e estender
as falanges médias e distais. Três músculos atuantes apenas sobre o
dedo mínimo, o abdutor do dedo mínimo, flexor curto do dedo mínimo e
oponente do dedo mínimo, também são músculos intrínsecos da mão.
A
flexão do polegar ocorre quando o primeiro metacarpal é movido
transversalmente à palma: a extensão é o movimento de retomo. A
abdução do polegar a partir da posição anatômica ocorre quando o
primeiro metacarpal afasta-se do segundo num plano perpendicular ao da
mão. A adução do polegar é o movimento de retorno. A oposição do
polegar aos dedos é uma ação peculiar e crucial da mão humana e
envolve uma combinação de abdução, circundução e rotação que
traz a ponta do polegar para uma posição olhando para as pontas dos
dedos, ou em oposição a elas.
Oito
músculos atuam sobre o polegar, dos quais quatro são intrínsecos da
mão. Os músculos extrínsecos são o extensor longo do polegar,
extensor curto do polegar. Abdutor longo do polegar e flexor longo do
polegar. Os quatro músculos intrínsecos, que se originam na eminência
tenar, são o flexor curto do polegar, oponente do polegar, abdutor
curto do polegar e adutor do polegar.
Os
movimentos do polegar são função de complexas interações
neuromusculares e mecânicas entre os músculos intrínsecos e
extrínsecos. Uma medida da complexidade e, portanto, da importância do
polegar à função normal da mão é refletida pelo fato de que o valor
do polegar foi estimado entre 40 e 50% de toda a mão. A extensão das
articulações do polegar está sob controle dos extensores longo e
curto do polegar, que atuam nas falanges e metacarpais. O oponente do
polegar e abdutor curto do polegar são músculos tenares ativos durante
a extensão do polegar. O flexor curto do polegar desempenha um
importante papel no posicionamento do polegar sem carga próximo às
pontas dos dedos, enquanto o flexor longo do polegar geralmente é
inativo. Este, entretanto, parece fornecer a maior parte da força
necessária para neutralizar cargas aplicadas ao polegar nessa
posição, não importando se a falange distal está fletida ou
estendida. O fator limitante na força da preensão pode de fato ser uma
função da incapacidade de o polegar opor-se a cargas.
Para
a adução do polegar contribuem o extensor longo do polegar, flexor
longo do polegar, flexor curto do polegar e adutor do polegar. A
contribuição do flexor e extensor longo do polegar é solicitada para
trabalhar contra uma carga e, ao neutralizar as tendências dos outros
músculos a fletir ou estender o polegar, propicia um torque de adução
resultante.
Os
músculos hipotenares, são o palmar curto, abdutor do dedo mínimo,
flexor curto do dedo mínimo e oponente do dedo mínimo.
Quando
o polegar é suavemente colocado em oposição aos lados e pontas de
cada um dos dedos mediais, os músculos tenares são mais ativos que os
hipotenares. Dos músculos tenares, o oponente é o mais ativo e o
flexor curto do polegar o menos ativo. O músculo hipotenar mais ativo
é o oponente do dedo mínimo. À medida que a força de oposição
aumenta, a atividade do flexor curto do polegar aumenta, tornando-se
dominante.
Os
dedos e seus movimentos exemplificam como o conhecimento do tipo de
articulação e da direção da linha de tração dos músculos
envolvidos não fornece todas as informações necessárias para
determinar o movimento qualitativamente. A complexa expansão extensora,
uma estrutura tendínea altamente especializada, é um importante
determinante do movimento dos dedos.
Na
posição lumbrical, os lumbricais e interósseos dorsais e palmares
não podem simultaneamente fletir a articulação MF e estender as
articulações IFP e IFD. Na posição em gancho, a contração dos
flexores longos dos dedos é necessária à flexão das IFP e IFD mas
também é acompanhada de um indesejável torque de flexão na MF. Para
anular o torque contraproducente, o extensor dos dedos se contrai, mas
assim fazendo tende a causar extensão das IFP e IFD). Essas
ineficiências aparentes podem ser explicadas pela natureza dos sistemas
de alavancas e pela tensão passiva gerada por antagonistas alongados.
Os
lumbricais e interósseos tendem a ser o sistema muscular dominante na
articulação MF. Segundo, o extensor dos dedos domina a articulação
MF quando os lumbricais não estão ativos. Terceiro, os flexores longos
dominam as articulações IFP e IFD mesmo quando o extensor dos dedos
está ativo.
Na
posição lumbrical, os lumbricais e interósseos causam flexão da MF,
que alonga o tendão do músculo extensor dos dedos e subseqüentemente
causa extensão das articulações IFP e IFD. Na posição em gancho, o
músculo extensor dos dedos e os flexores longos contribuem. O primeiro
domina a articulação MF e os dois últimos dominam as articulações
IFP e IFD. Na flexão completa, os flexores longos dominam as
articulações MF, IFP e IFD, mas o estiramento imposto à expansão
extensora deve ser aliviado por algum grau de extensão do punho ou, no
mínimo, evitando-se a flexão do punho.
O
movimento de preensão é geralmente considerado como a categoria de
movimentos da mão nos quais a mão segura um objeto. Os movimentos de
preensão são classificados como aperto de potência ou aperto de
precisão. No primeiro, todos os músculos extrínsecos contribuem para
a força. Os músculos interósseos e tenares são usados no aperto de
potência, mas os lumbricais (excluindo o quarto) não são ativos.
O
movimento grosseiro e força compressiva necessários no aperto de
precisão são proporcionados por músculos extrínsecos específicos.
Os músculos intrínsecos, entretanto, fornecem as características de
controle fino da preensão. Se um objeto precisa ser girado na mão, os
interósseos são importantes para abduzir e/ou aduzir as articulações
MF, e os lumbricais abduzem e/ou aduzem e giram a falange proximal. Os
interósseos propiciam alterações delicadas na compressão, e o flexor
curto do polegar oponente do polegar e abdutor do polegar fornecem
forças de adução transversalmente à palma.
14.4.
CONSIDERAÇÕES MECÂNICAS DAS LESÕES DO PUNHO E MÃO
O
traumatismo de várias regiões do membro superior proximais ao punho e
mão freqüentemente resulta em disfunção distal. Três nervos do
membro superior, o ulnar, o mediano e o radial, estão sujeitos a lesão
e influenciam diretamente a função da mão. As lesões do cotovelo
podem afetar o nervo ulnar quando este passa entre o epicôndilo medial
e o elécrano, onde é coberto apenas por fáscia e pele. A abdução e
adução dos dedos, exceto o polegar, e a flexão do quarto e quinto
dedos são afetadas por uma lesão do nervo ulnar. O nervo mediano é o
nervo para o lado radial do antebraço e mão. Um dos muitos ramos desse
nervo supre a maioria dos músculos da eminência tenar, e a lesão do
nervo pode afetar profundamente a função do polegar. O nervo radial
supre os músculos extensores do braço e antebraço. Espiralando-se em
volta do úmero a partir do plexo braquial, o nervo radial pode ser
lesado em decorrência de lesões do complexo do ombro como luxações e
fraturas, afetando assim o movimento no punho e na mão.
O
canal do carpo é uma área relativamente constrita localizada na face
anterior do punho através da qual passam os oito tendões flexores, o
flexor longo do polegar e o nervo mediano. O canal é formado em três
lados pelos ossos do carpo e no quarto lado pelo ligamento cárpico
palmar. A síndrome do canal do carpo resulta de uma compressão que
pode ser iniciada por micro ou macrotraumatismos, tenossinovite
(inflamação de uma bainha tendínea) dos tendões flexores, fratura,
ou luxação de qualquer um dos carpais. Basicamente, a tumefação do
conteúdo do canal ou uma constrição do canal comprime o nervo
mediano. Os resultados são uma gama de sintomas na distribuição do
nervo mediano, desde formigamento dos dedos indicador e médio a atrofia
dos músculos tenares.
15.
A COLUNA VERTEBRAL
15.1.
CONSIDERAÇÕES ANATÔMICAS
A
coluna vertebral é composta de 33 vértebras, das quais 24 se unem para
formar uma coluna flexível. De cima para baixo, são classificadas como
cervicais (C1 -C7), torácicas (T1-T12), lombares (L1-L5), sacrais
(S1-S5) e quatro coccígeas. As vértebras sacrais e coccígeas são
denominadas vértebras falsas porque no adulto são fundidas para formar
o sacro e cóccix. As demais vértebras, cervicais, torácicas e
lombares, são denominadas verdadeiras porque permanecem distintas por
toda a vida.
O
forame vertebral, através do qual passa a medula espinhal, é limitado
na frente pelo corpo vertebral e atrás pelo arco vertebral. Este arco
é formado por dois pedículos e lâminas. Os pedículos se originam do
corpo vertebral, enquanto as lâminas se originam dos pedículos. Um
processo espinhoso projeta-se para trás a partir de sua origem na
junção das lâminas, e dois processos transversos projetam-se para
trás e lateralmente a partir de sua origem nas junções dos pedículos
e lâminas. Dois pares de processos articulares, superiores e
inferiores, unem vértebras adjacentes. Os nervos espinhais em cada
nível segmentar deixam a coluna vertebral através dos forames
intervertebrais, que são limitados pelas incisuras vertebrais (superior
e inferior) de vértebras contíguas.
A
coluna vertebral é sustentada e protegida de forças em parte pelas
estruturas articulares. Os dois tipos de articulações na coluna
vertebral são sínteses cartilagíneas e sinoviais planas. O primeiro
tipo é encontrado ao longo da coluna vertebral do áxis ao sacro e
composto de discos fibrocartilagíneos entre os corpos de vértebras
adjacentes. Estes discos são contíguos com camadas de cartilagem
hialina nas faces inferiores e superiores dos corpos e são
classificados como sínfises. Na região torácica, os discos têm uma
espessura quase uniforme, enquanto nas áreas cervical e lombar são
mais espessos na frente, o que contribui para as curvas regionais.
Os
discos intervertebrais são compostos de duas estruturas principais. O
núcleo pulposo é uma massa semelhante a gel situada no centro do
disco. É limitado por uma camada de fibrocartilagem resistente
denominada anel fibroso.
Os
discos degeneram-se com a idade em associação a uma redução em sua
capacidade de ligar-se com água. Esta qualidade de ligação à água
reduzida resulta em menor elasticidade, o que influencia a capacidade de
armazenar energia e distribuir cargas e, portanto, a capacidade de
resistir à colocação de cargas.
A
outra articulação encontrada na coluna vertebral é a articulação
sinovial entre os processos de vértebras adjacentes. As cápsulas
dessas articulações são finas e bastante frouxas, fixando-se às
margens dos processos articulares. A flexibilidade (a capacidade de uma
articulação percorrer uma amplitude de movimento) da coluna vertebral
está diretamente relacionada à orientação dessas articulações com
referência umas às outras.
A
sustentação ligamentosa da coluna vertebral provém de suas
estruturas. O ligamento longitudinal anterior segue do áxis ao sacro ao
longo das faces anteriores dos corpos das vértebras. Adere aos discos e
margens salientes dos corpos, mas não é firmemente fixado aos meios
dos corpos. O ligamento longitudinal posterior também segue do áxis ao
sacro, mas ao longo das faces posteriores dos corpos dentro do forame
vertebral. Os ligamentos amarelos conectam as lâminas de vértebras
contíguas em toda a extensão do forame vertebral. Os ligamentos
amarelos consistem em tecido elástico amarelo cuja extensibilidade e
elasticidade permitem a separação das lâminas durante a flexão da
coluna vertebral. O ligamento supra-espinhal conecta as pontas dos
processos espinhosos de C7 até o sacro. E um forte cordão fibroso
cujas fibras, dependendo da localização, podem transpor até quatro
vértebras. Acima de C7 continua-se como o ligamento da nuca, membrana
fibroelástica que no homem representa um vestígio de um importante
ligamento elástico encontrado em alguns tipos de animais pastadores.
15.2.
MOVIMENTOS ARTICULARES
As
duas primeiras vértebras cervicais são estruturas altamente
especializadas dedicadas à sustentação do crânio. A primeira,
denominada atlas, não possui corpo, mas é um anel ósseo circundando o
forame vertebral. Em sua face superior tem duas grandes faces
articulares côncavas que acomodam os côndilos occipitais do crânio.
Essas articulações atlanto-occipitais permitem uma flexão e extensão
consideráveis da cabeça. A articulação tem uma cápsula frouxa mas
é reforçada pelos ligamentos atlanto-occipitais anterior, posterior e
lateral. A segunda vértebra, denominada áxis, tem uma cavilha curta,
chamada de dente, que se estende verticalmente a partir de seu corpo
para o forame vertebral do atlas, onde um ligamento muito grande o
separa da medula espinhal. Este processo ósseo serve como um pivô em
torno do qual o atlas gira livremente, tornando possível girar ou
balançar a cabeça de um lado a outro. O movimento nessas duas
articulações é livre em comparação com as outras articulações
intervertebrais.
No
resto da região cervical, contudo, as articulações zigoapofisárias
são inclinadas até 450 do plano transversal (de frente para trás) e,
em geral, se situam orientadas com o plano frontal. Devido a esse
alinhamento, as articulações zigoapofisárias da região cervical
permitem flexão e extensão no plano sagital, flexão lateral no plano
frontal e rotação no plano transversal. A amplitude de movimento para
a flexão e extensão varia de cerca de 5 a 170, flexão lateral de 5 a
100 e rotação de 8 a 120 para cada articulação.
Na
região torácica, as articulações zigoapofisárias estão em ângulos
de até 60º para o plano transversal e 20º para o plano frontal. Tais
articulações permitem uma flexão lateral variando de 7 a 10º por
segmento e rotação de 2 a 10º. Os oito segmentos superiores (TI a T8)
permitem até 9º de rotação, mas esta quantidade é reduzida para
cerca de 2º nos quatro segmentos torácicos inferiores. A flexão e
extensão, ainda mais restritas pelas costelas, são limitadas a cerca
de 3 a 4º nos 10º segmentos superiores, mas atingem 10º nos segmentos
inferiores. A amplitude de movimento das vértebras torácicas também
é influenciada pela espessura dos discos intervertebrais.
Na
região lombar, as faces articulares podem ser perpendiculares ao plano
transversal e apresentar um ângulo de até 45º em relação ao plano
frontal. Devido a esse alinhamento, a rotação no plano transversal é
intensamente restringida para 2º por segmento em todas as
articulações exceto a última (L5 para S1), que permite até 4º a
flexão e extensão variam de 12º na maioria das vértebras lombares
superiores a 20º na mais inferior. A flexão lateral varia de 3 a 8º
por segmento.
15.3.
LOMBALGIA
As
causas de lombalgia foram classificadas em cinco categorias principais:
distúrbios intra-abdominais, doença vascular abdominal/periférica,
distúrbios psicogênicos, fontes neurogênicas como lesões do
cérebro, medula espinhal e nervos periféricos, e fontes
espondilogênicas, que estão relacionadas à coluna vertebral e
estruturas anatômicas associadas.
Uma
questão recorrente a respeito dos distúrbios acompanhados de lombalgia
é por que a região lombar parece predisposta a lesões. Dois fatores
fundamentais são a fraqueza inerente da estrutura e as forças ou
cargas que ela enfrenta durante tarefas quotidianas e atividades
recreativas/desportivas. As fontes das cargas às quais a coluna
vertebral é submetida incluem o peso corporal, cargas aplicadas
externamente e a contração de músculos.
15.3.1.
Cargas aplicadas à coluna vertebral
A
dor no dorso, especialmente na região lombar, é tão prevalente nos
esportes, ambientes profissionais e mesmo situações domésticas que se
tem empreendido pesquisas biomecânicas sobre este tema em todo o mundo.
O
desequilíbrio entre a força da musculatura dorsal e da abdominal pode
ser fonte de problemas. Um desequilíbrio pode criar, entre outras
coisas, um desvio da postura pélvica, deste modo alterando a curva
lordótica e subseqüentemente sobrecarregando o disco.
As
atividades causadoras de rotação são aquelas durante as quais a
coluna vertebral é submetida a torções vigorosas.
Em
análises biomecânicas simplificadas, pode-se tratar a coluna vertebral
como um corpo rígido girando em tomo de seu eixo, situado na
articulação lombossacral (L5-S 1). Considere algumas das forças que
atuam sobre esse tipo de modelo durante as posturas elementares de ficar
em pé e levantar-se, dado um homem de 891 N (91 kg) na posição ereta.
Se 50% do peso corporal estiverem acima da articulação lombossacral,
pode-se pressupor uma força compressiva de 445,5 N (45,5 kg). Contudo,
no indivíduo normal, a face superior de S1 é inclinada para a frente
de 30º a 40º (ângulo sacral). Essa inclinação introduz uma força
de cisalhamento de até 341,25 N 934,8g). as forças compressivas atuam
predominantemente sobre o anel fibroso através da compressão do
núcleo pulposo. As forças de cisalhamento afetam principalmente o
forame intervertebral, às vezes denominado arco neural, a área entre
os processos articulares inferior e superior contíguos.
Se
o homem agora fletir a coluna vertebral de modo que o ângulo seja 45º,
é evidente que o braço de momento do centro de gravidade da metade
superior do corpo, e o braço de momento de qualquer peso externo nas
mãos ou em outro lugar, aumenta. Isto significa que se houver
necessidade de manter a metade superior do corpo numa posição de
equilíbrio estático, o torque exercido pelos extensores vertebrais
(músculo eretor da espinha) deve ser igual a essa tendência rotacional
para a frente. Observa-se que o torque necessário aumenta à medida que
o ângulo do tronco aproxima-se de 90º, quando o braço de momento
atinge seu máximo.
Quando
o ângulo do tronco aumenta além de 90º e o centro de gravidade é
trazido mais próximo do eixo de rotação, o braço de momento começa
a diminuir. Logo, a contribuição dos extensores do tronco necessária
para se opor a esse torque também se reduz. Entretanto, após um certo
ponto na amplitude de movimento da flexão vertebral e da flexão do
quadril associada, pode-se observar "relaxamento dos
flexores".
Quando
ocorreu relaxamento dos flexores, disse-se que as estruturas
ósseo-ligamentosas passivas foram responsáveis pela estabilização da
coluna vertebral. (No entanto, o eretor da espinha alongado e o grupo
posterior profundo criam tensão passiva, a despeito do silencio
elétrico, segundo suas propriedades de comprimento-tensão). Como o
braço de momento dos ligamentos pós-vertebrais é pequeno, a
necessidade de forças dessa magnitude é potencialmente perigosa para
os ligamentos. A perda de pelo menos parte do controle muscular nas
posições extremas fornece informações biomecânicas importantes
acerca de diversas tarefas de levantamento, simétricas e assimétricas.
15.4.
MÚSCULOS DA COLUNA VERTEBRAL
Os
músculos que atuam sobre a coluna vertebral podem inicialmente ser
divididos em duas categorias, anterior e posterior. Os músculos de
ambas as categorias existem em pares bilaterais, embora possam e de fato
funcionem de modo independente (unilateralmente). Como regra geral, os
músculos da categoria anterior causam flexão da coluna vertebral,
enquanto os da categoria posterior são responsáveis pela extensão.
Considera-se que um músculo, o quadrado lombar, atua como flexor
lateral puro.
15.4.1.
Grupo anterior - flexores cervicais
O
grupo pré-vertebral de músculos consiste no longo do pescoço e longo
da cabeça. Estes são músculos profundos que causam flexão da cabeça
e vértebras cervicais (exceto o longo do pescoço, que atua apenas
sobre as vértebras cervicais) quando se contraem bilateralmente. A
contração unilateral desses músculos causa flexão lateral das
vértebras cervicais ou rotação da cabeça. Os oito músculos
hióideos causam flexão cervical contra uma resistência maior que a do
segmento, mas são usados principalmente na deglutição.
O
superficial esternocleidomastóideo, um músculo de duas cabeças,
também flete a cabeça e vértebras cervicais. Atuando unilateralmente,
causa a flexão lateral das vértebras cervicais e rotação da cabeça
para o lado oposto (os termos lado oposto e mesmo lado em relação à
rotação serão usados para indicar o lado com referência ao músculo
que esteja se contraindo unilateralmente).
Os
músculos escalenos (anterior, médio e posterior) podem ser
considerados com a categoria anterior, mas na verdade situam-se mais
lateralmente. Embora importantes na respiração, também fletem as
vértebras cervicais ou, se ativados em um lado, fletem lateralmente as
vértebras cervicais.
15.4.2.
Grupo anterior - flexores lombares
Conforme
indicado antes, o grau de flexão e extensão da região torácica é
extremamente restrito. Por isso, apenas a região lombar é apresentada
aqui. Devido às limitações da região torácica ao movimento no plano
sagital, a grande amplitude da flexão-extensão cervicais não
influencia a região lombar.
O
grupo de músculos responsáveis pela flexão lombar é geralmente
referido como abdominais. Eles não possuem nenhuma conexão direta com
a coluna vertebral. Alguns são ainda distinguidos por não possuírem
fixações ósseas em nenhuma das extremidades. Ademais, além das
ações articulares cruciais que efetuam (isto é, flexão lombar), são
importantes na constrição da cavidade abdominal e seu conteúdo. Esta
última função eleva a pressão intra-abdominal, que, além de estar
associada à eliminação de resíduos (defecação e micção), também
reduz as cargas sofridas pelas vértebras lombares durante determinadas
atividades. Uma discussão dessa função segue-se à apresentação da
musculatura.
O
músculo reto do abdome, como seu nome indica, desce verticalmente no
abdome e suas partes direita e esquerda são separadas pela linha branca
tendínea. Devido à sua linha de tração orientada verticalmente, é
um primo-agonista para a flexão da coluna vertebral e um flexor lateral
quando ativado apenas de um lado.
Os
músculos oblíquos interno e externo do abdome cobrem as porções
anterior e lateral da parede abdominal entre o reto do abdome na frente
e o músculo grande dorsal / fáscia toracolombar atrás. As fibras
desses músculos seguem quase perpendicularmente umas às outras, uma
característica que se reflete numa grande diferença em suas ações
unilaterais.
Quando
ambos os lados dos oblíquos externos se contraem simultaneamente, os
componentes Z e X de sua tração são neutralizados. Quando apenas um
lado do músculo é ativado, contudo, ocorre flexão vertebral e, além
disso, flexão lateral e rotação do tronco, neste caso para o lado
oposto. Com exceção da direção da rotação, o mesmo é válido para
os oblíquos internos. Durante uma contração unilateral desse
músculo, a rotação do tronco é para o lado oposto. O transverso do
abdome, o músculo mais profundo desse grupo, não tem uma função
associada à execução motora por causa de sua linha de tração e
conexões tendíneas. No entanto, todos esses músculos têm uma
conexão anatômica comum ou relação entre si, pois as bainhas
aponeuróticas dos oblíquos externo e interno e do transverso do abdome
formam a bainha do reto do abdome.
15.4.3.
Grupo posterior - extensores vertebrais
Aproximadamente
140 músculos estão envolvidos na função motora da coluna vertebral.
Para fins de uma análise geral do movimento, a separação dos
extensores da coluna vertebral em grupos simplifica o assunto sem
comprometer a compreensão. Dois grandes grupos de músculos compõem o
grupo posterior (ou extensores vertebrais): o eretor da espinha e o
grupo posterior profundo.
O
grupo eretor da espinha, ou músculo sacroespinhal, se origina como uma
grande massa carnosa na área sacral; quando ascende na coluna
vertebral, divide-se em três colunas principais. A divisão, que ocorre
no nível lombar superior, resulta na formação dos músculos
iliocostal, longíssimo e espinhal (ainda considerados globalmente como
o eretor da espinha. Nas regiões torácica e lombar, o músculo
sacroespinhal é coberto pela fáscia toracolombar. Esta estrutura é
particularmente relevante, tendo em vista a prevalência da síndrome de
lombalgia e a relação de uma maior força dos músculos abdominais com
a redução das cargas sobre a coluna vertebral. O transverso do abdome
e a porção inferior da origem do oblíquo interno do abdome nascem
dessa fáscia. Ademais, a porção inferior da origem do oblíquo
externo justapõe-se a uma parte do grande dorsal, dos quais o último
também é incorporado à fáscia.
O
músculo iliocostal, a mais lateral das três colunas, divide-se em
três partes regionais, os iliocostais lombar, torácico e do pescoço.
Os nomes assinalam sua posição anatômica. A coluna intermédia
(longíssimo) e a coluna medial (espinhal) se dividem em três partes
regionais, a do tórax, do pescoço e da cabeça. Todos estes músculos
servem para estender a coluna vertebral em diversos níveis. A
contração unilateral do músculo iliocostal e do longíssimo do tórax
causa flexão lateral e rotação para o mesmo lado. A flexão lateral e
rotação das vértebras cervicais e cabeça são produzidas pelos
longíssimos do pescoço e da cabeça, respectivamente, quando um lado
se contrai. Os espinhais do tórax e do pescoço, contraindo-se
unilateralmente, também causam flexão lateral. Em geral, o espinhal da
cabeça está associado estrutural e funcionalmente ao semi-espinhal da
cabeça.
Os
músculos esplênicos (do pescoço e da cabeça) são freqüentemente
considerados parte do grupo eretor da espinha. Ambos servem como
extensores das vértebras cervicais e podem causar rotação dessas
vértebras e da cabeça.
O
grupo espinhal posterior profundo inclui os intertransversários,
interespinhais, rotadores e multífidos, todos os quais atuam para
estender a coluna vertebral. Atuando unilateralmente, estes músculos
causam flexão lateral e rotação para o lado oposto. É importante
ressaltar que, assim como todos os músculos, o grau no qual essas
ações unilaterais ocorrem depende do torque gerado pela contração.
Estes músculos geralmente possuem braços de momento muito pequenos.
Por exemplo, atribuiu-se um braço de momento de 24 mm ao eretor da
espinha atuando na articulação L5-S 1. Com base na linha de tração
observada do músculo, poder-se-ia muito bem considerar esses movimentos
rotatórios e de flexão lateral resultantes como movimentos previstos
apenas biomecanicamente, ao contrário de movimentos significativos.
15.5.
PAPEL DA MUSCULATURA ABDOMINAL NA REDUÇÃO DAS CARGAS VERTEBRAIS
As
vértebras lombares e seus discos associados são submetidas a forças
muito grandes durante o curso de atividades diárias. Em geral, a
fratura do corpo vertebral ocorre antes da ruptura de um disco sadio.
Vários pesquisadores estimaram ou mediram as magnitudes dessas forças.
Devido à freqüência de lesões do dorso com suas subseqüentes
repercussões econômicas, a mecânica da coluna vertebral tem sido
estudada extensamente. Alguns autores, procurando quantificar forças
normalmente encontradas sobre a coluna vertebral, usaram modelos
biomecânicos. Um modelo estimou as forças compressivas sobre L5 em
10.000 N. Outros relataram valores mais conservadores de 4.250 N de
compressão. Em modelos dinâmicos, nos quais as forças resultantes da
inércia e aceleração devem ser consideradas, foram relatadas forças
compressivas máximas de 7.000 N. Kumar e Davis sugeriram que, via de
regra, os levantamentos dinâmicos podem ser considerados pelo menos
duas vezes mais estressantes que sustentações estáticas para a mesma
resistência. Naturalmente, as forças de cisalhamento aumentam com as
forças compressivas, e se a carga for assimétrica, forças rotacionais
são introduzidas.
As
cargas sobre a coluna vertebral, especialmente a região lombar, devem
ser mantidas o mais baixo possível.
A
relação entre músculos abdominais fortes e um dorso sadio interessa
há muito os cinesiologistas. Existe uma relação de causa-efeito
intuitiva entre contração dos músculos do abdome, compressão do
conteúdo abdominal e elevação da PIA (pressão intra-abdominal.
Quanto maior a PIA e mais rígido o cilindro tóraco-abdominal, maior a
fração de carga vertebral compartilhada e maior a redução das cargas
vertebrais.
15.6.
MECANISMOS TORÁCICOS BÁSICOS
A
principal finalidade do tórax, composto pelas vértebras torácicas, 12
pares correspondentes de costelas, cartilagens costais e esterno, é a
proteção dos principais componentes dos sistemas respiratório e
circulatório.
O
movimento do tórax está envolvido primariamente com a respiração. A
restrita amplitude do movimento toracovertebral, no que diz respeito á
complexidade e número de tarefas que constituem o movimento humano,
torna-o menos relevante que as regiões cervical e lombar. O movimento
do tórax é definido predominantemente pela elevação e abaixamento
das costelas e, sob várias condições, incluí a participação de
músculos previamente descritos e outros que merecem consideração. Em
geral consideram-se como os principais músculos da respiração o
diafragma e os intercostais. Os músculos escalenos,
esternocleidomastóideo, peitorais, serrátil anterior e abdominais são
considerados agonistas e acessórios.
No
homem, o diafragma é o músculo inspiratório principal. Com sua
ativação e subseqüente contração, o diafragma expande a base do
tórax ao mover as costelas para cima e lateralmente. Este movimento
ocorre pelas forças transmitidas através de seu centro tendíneo
(inserção) à sua origem, que se fixa quase inteiramente ao redor da
face interna da cavidade corporal.
Os
oblíquos internos e intercostais externos são ativos durante a
expiração e inspiração, respectivamente. Esses músculos funcionam
de acordo com o interespaço no qual estão localizados.
15.7.
DEFEITOS ESPECÍFICOS
A
flexibilidade da coluna vertebral às vezes é prejudicada pelo
desenvolvimento de desvios indesejáveis.
A
cifose e escápulas abduzidas são inteiramente diferentes: a primeira
é uma convexidade posterior aumentada da coluna torácica e a última
um desvio, para a frente, do cíngulo do membro superior. Entretanto,
uma causa a outra e as duas comumente aparecem como um defeito
integrado.
A
cifose resistente ou estrutural, ou qualquer defeito desse tipo
acompanhado de dor aguda, indica uma provável doença ou defeito
hereditário de natureza mais grave. Jamais se devem fornecer
exercícios corretivos nesses casos, exceto quando prescritos por um
médico.
A
lordose é uma concavidade posterior aumentada da curva lombar ou
cervical normal, acompanhada de uma inclinação da pelve para a frente.
Os
músculos da região lombar são encurtados e os abdominais alongados.
Quando essa posição é assumida habitualmente, um peso excessivo é
lançado sobre as margens posteriores dos corpos das vértebras lombares
e há uma forte tendência ao desenvolvimento de escápulas abduzidas em
compensação ao desvio para trás do peso corporal. Os indivíduos que
são mais flexíveis do que a média têm apenas de adquirir a
capacidade de assumir a posição correta da coluna vertebral e, então,
praticá-la até que o hábito esteja estabelecido.
Quando
a pelve é inclinada excessivamente para a frente, os músculos do dorso
e flexores dos quadris são encurtados enquanto os músculos do abdome e
do jarrete são alongados. Não trará nenhum beneficio corrigir o
desequilíbrio apenas dos músculos do tronco ou do quadril, ambos os
grupos devem ser ajustados e controlados para manter a pelve em seu grau
de inclinação apropriado.
Dorso
plano (cifose lombar) - o dorso plano envolve uma redução abdominal na
curvatura lombar normal. O ângulo de obliqüidade da pelve é reduzido,
pois os músculos dos jarretes são curtos demais e os flexores dos
quadris e ligamentos iliofemorais, longos demais. Está comumente
associado aos ombros arredondados, tórax plano e abdome protuso
típicos do quadro clínico de fadiga. A condição é de difícil
correção, mas os esforços para aumentar a força e tônus dos
músculos do abdome e eretor da espinha podem ser recompensadores.
Curvatura
lateral - a curvatura lateral da coluna vertebral, que em estágios
acentuados é denominada escoliose, é um desvio para um dos lados.
Representa uma combinação de desvio lateral e rotação longitudinal.
Poder-se-ia esperar que os músculos no lado côncavo da curvatura
fossem mais fortes que os do lado convexo, e isto é o que seria
observado se a curvatura decorresse da ação desimpedida dos músculos
longitudinais. Contudo, estudos eletromiográficos mostraram que na
maioria dos casos os músculos no lado côncavo são mais fracos que o
normal. Isto é atribuído ao fato de que o desequilíbrio dos músculos
mais profundos (semi-espinhal, multífico e rotadores) é o principal
fator na produção da deformidade. Esses músculos profundos são
rotadores importantes. Quando os de um lado são paréticos, a ação
desimpedida dos músculos do lado oposto gira as vértebras para uma
posição escoliótica.
Em
alguns casos, entretanto, os músculos no lado convexo estão atrofiados
e os do lado côncavo, contraídos. E controverso se as alterações que
depois ocorrem podem ser explicadas com base apenas no desequilíbrio
muscular.
A
curvatura lateral diminui a capacidade da coluna vertebral de sustentar
o peso corporal, distorce as cavidades corporais, aglomera os órgãos
fora de lugar e, em casos avançados, causa compressão dos nervos
espinhais onde eles deixam o canal vertebral. A escoliose geralmente
começa com uma curva em C única. Esta pode ser para qualquer um dos
lados, mas como a maioria das pessoas é destra, os músculos no lado
direito do corpo são mais fortes e a convexidade tende a se desenvolver
para a esquerda. A condição tende a ser mais prevalecente em meninas e
entre biótipos ectomorfos, mas não está confinada a nenhum dos dois.
a curvatura pode estender-se por toda a coluna vertebral ou ser
localizada. Uma curva em C pode inclinar a cabeça obliquamente, quando
então há uma tendência reflexa a endireitá-la até que os olhos
estejam novamente nivelados. Ao longo do tempo, esse reflexo de
endireitamento cria uma inversão da curva em C nos níveis espinhais
superiores, produzindo uma curva em S. podem surgir novas tentativas de
compensação, criando ondulações adicionais na curva.
Nos
estágios iniciais, a escoliose pode ser funcional, ou postural. Estes
termos indicam que a curva pode ser eliminada por esforço voluntário
ou ao pendurar-se com as mãos. Nos estágios posteriores, a condição
se torna resistente, ou estrutural, e a curva não pode mais ser
eliminada desse modo. Uma vez estabelecida uma curva estrutural,
exercícios corretivos podem produzir uma curva compensatória ao invés
de abolição da curva primária.
A
escoliose pode ser causada por numerosas condições unilaterais,
incluindo defeitos hereditários da estrutura; deterioração de
vértebras, ligamentos, ou músculos, em decorrência de infecções ou
doença; paralisia unilateral de músculos espinhais; um membro inferior
curto unilateral; pé plano ou pronação unilateral; e desequilíbrio
do desenvolvimento muscular devido à profissão ou hábito.
16.
A ARTICULAÇÃO DO QUADRIL
A
articulação do quadril é uma articulação esferóide. É formada
pelo encaixamento da cabeça do fêmur no acetábulo do osso do quadril.
16.1.
MOVIMENTOS ARTICULARES
A
despeito da estabilidade inerente proporcionada à articulação por sua
arquitetura e sustentação ligamentosa, a articulação do quadril
demonstra um alto grau de mobilidade. Os movimentos permitidos pelo
quadril, descritos com referência ao fêmur, incluem a flexão e
extensão no plano sagital, abdução e adução no plano frontal e
rotação medial e lateral no plano transversal.
O
posicionamento do corpo do fêmur, por meio do colo femural, a uma certa
distância da pelve óssea, ajuda a prevenir restrições à amplitude
movimento de articulação do quadril que poderiam resultar de colisão.
O ângulo colo-corpo permite que o corpo do fêmur se posicione mais
lateralmente em relação à pelve. No plano frontal, com referencia ao
eixo longitudinal do fêmur, o ângulo colo-corpo normal é de
aproximadamente 125º. A deformidade na qual o ângulo é maior,
denominada coxa vara, e a deformidade na qual o ângulo é menor,
denominada coxa valga, causam alterações na transmissão de forças
para o fêmur e a partir dele.
Um
segundo ângulo, o de anteversão, é o ângulo no qual o colo se
projeta do fêmur na direção ântero-posterior. Embora haja uma grande
variação entre indivíduos, o valor normal é cerca de 12º a 14º. A
articulação do quadril pode mover-se independentemente do cíngulo do
membro inferior, mas pode ser complementada por inclinações da pelve.
A diferença do sistema aberto do cíngulo do ombro, o sistema fechado
do cíngulo pélvico impossibilita movimentos no lado direito
independentes do esquerdo. Na posição ereta, as aberturas superior e
inferior da pelve formam ângulos com o plano horizontal, de
aproximadamente 50º-60º e 15º, respectivamente.
Este
ângulo denomina-se inclinação da pelve. As inclinações da pelve
são rotações medidas com referência à inclinação pélvica e
classificadas em relação às articulações dos quadris e
lombossacral. A articulação do quadril demonstra sua maior amplitude
de movimento no plano sagital, no qual se observa que a flexão pode
chegar a 140º e a extensão a 15º. A abdução também pode atingir
30º e a adução um pouco menos que isto, 25º. A adução deve ser
acompanhada de alguma flexão. O grau de flexão do quadril afeta a
magnitude da rotação medial e lateral. Numa posição estendida, na
qual os efeitos limitadores dos tecidos ligamentosos se manifestam, as
amplitudes de rotação medial e lateral se reduzem para 70º e 90º,
respectivamente.
16.2.
MUSCULATURA DA ARTICULAÇÃO DO QUADRIL
Vinte
e dois músculos atuam sobre a articulação do quadril. Foram
apresentados vários esquemas de classificação, mas um método singelo
é identificar os músculos que dão contribuições importantes para
cada uma das ações possíveis na articulação do quadril. Os membros
do grupo flexor incluem o psoas e o ilíaco, os agonistas primários e o
reto da coxa.
O
grupo extensor do quadril inclui os músculos do jarrete:
semimembranáceo, semitendíneo e cabeça longa do bíceps da coxa.
O
grupo adutor do quadril é composto pelo grácil, adutor longo, adutor
curto, adutor magno e pectíneo. O grupo abdutor é composto de vários
músculos que atuam predominantemente em outras ações articulares. A
rotação lateral é uma função de parte do glúteo máximo, reto da
coxa e um grupo de seis músculos geralmente agrupados como os rotadores
laterais.
16.3.
MÚSCULOS BIARTICULARES (multiarticulares)
Músculos
biarticulares são aqueles que atravessam várias articulações e criam
cinética significativa nessas articulações. Os músculos do membro
inferior são freqüentemente empregados como exemplos anatômicos e
objetos de pesquisa a respeito dos mecanismos de seu controle pela parte
central do sistema nervoso e as resultantes ações articulares. Markee
et al sugerira que os músculos biarticulares podem atuar numa
extremidade sem influenciar a outra; esta hipótese foi contestada por
Basnuajian e De Luca. A regra geral acerca de um músculo biarticular é
que ele traciona ambos seus tendões não seletivamente em direção ao
ventre do músculo, deste modo influenciando as articulações. Um
músculo biarticular não pode atuar como um músculo monoarticular sem
o auxílio de outros músculos, a menos que uma das ações articulares
seja estabilizada por outros músculos. O efeito cinético do músculo
sobre a segunda articulação é diminuído.
Um
exemplo simples da atividade de um músculo multiarticular é o paradoxo
do psoas, no qual o músculo psoas, enquanto flete o quadril, causa
hiperextensão da região lombossacral através de inclinação pélvica
anterior, embora o psoas seja considerado flexor do tronco. O paradoxo,
a inversão do papel de flexão/extensão, pode ser observado durante
exercícios como os "abdominais" com os membros inferiores
estendidos e elevações de ambos os membros inferiores. As vértebras
lombares são puxadas para a frente e para baixo pela contração do
psoas. A contração simultânea dos músculos do abdome evita a
inclinação anterior da pelve a menos que esses músculos estejam
fatigados ou fracos; assim, a pelve não gira para a frente nem as
vértebras lombares são hiperestendidas. Durante algumas combinações
de ações articulares, os movimentos criados por músculos
biarticulares são mais eficientes do que se fossem criados por
músculos monoarticulares. Durante a corrida, por exemplo, logo antes do
contato do calcanhar, os extensores do quadril realizam trabalho
positivo sobre o quadril, ao mesmo tempo que realizam trabalho negativo
sobre a perna para desacelerar a extensão no joelho. Felizmente, os
músculos do jarrete realizam ambas as funções simultaneamente a um
baixo custo metabólico. Elftman estimou o dispêndio de energia por
músculos bi e monoarticulares para realizar essa tarefa em 2,61 e 3,97
cavalos força, respectivamente. A execução por um músculo
biarticular representa uma economia de energia superior a 34%. As
ações tendínea, de correia de transmissão e de polia são
características atribuídas a músculos biarticulares porque esses
músculos não podem causar uma amplitude total de movimento
simultaneamente em ambas as articulações sobre as quais atuam. Quando
o quadril e o joelho se fletem simultaneamente, como no movimento
preparatório de um chute de caratê, ou se estendem ao mesmo tempo,
como na fase de ataque do chute, o músculo se contrai mas não perde
tanto de seu comprimento quando dois músculos monoarticulares poderiam
se executassem a mesma ação.
16.4.
CONSIDERAÇÕES MECÂNICAS SOBRE AS LESÕES DAS REGIÕES DA PELVE E
QUADRIL
16.4.1.
Pelve
A
crista ilíaca é particularmente suscetível a lesões devido à sua
localização superficial e à massa de tecidos moles na área vizinha.
As contusões incluem periostite da crista ilíaca, entorse e avulsões
musculares. Mais graves, obviamente, são as fraturas do osso ilíaco,
as quais são infreqüentes porque a maioria dos esportes que envolvem
forças que podem acarretar este tipo de lesão exige acolchoamento
protetor. Corridas e saltos vigorosos podem causar fraturas da espinha
ilíaca ântero-superior.
16.5.
ARTICULAÇÃO DO QUADRIL
A
articulação do quadril é extremamente estável e tem uma grande
amplitude de movimento. Enquanto para atletas o joelho parece ais
suscetível a lesões muito graves, para a população não-atlética
há estatísticas assustadoras acerca de fraturas do quadril. Por
exemplo, a osteoporose, uma condição óssea degenerativa que afeta
principalmente mulheres acima de 45 anos de idade, é a causa de 1,3
milhão de fraturas por ano. Destas fraturas, 200.000 são no quadril e
40.000 destas causam complicações que levam á morte. As fraturas do
quadril, então, representam a principal causa de morte em indivíduos
idosos nos EUA. As fraturas do quadril ocorrem menos freqüentemente em
negros acima de 45 anos que em brancos dessa idade, mas as razões para
esta diferença são obscuras. A lesão de tecidos moles na região do
quadril é uma ocorrência em mais comum em atletas que em não-atletas.
Lesões relacionadas a estiramento são amiúde relatadas,
particularmente envolvendo músculo e nervo. Outros fatores que tomam
essa região suscetível a lesões são a extrema amplitude de
movimento, as potentes contrações musculares associadas á região
durante atividades como as diversas formas de locomoção e as abruptas
mudanças de direção e posição, comuns em atividades desportivas e
recreativas.
16.6.
A ARTICULAÇÃO DO JOELHO
A
articulação do joelho, tipicamente classificada como uma sinovial em
dobradiça, é a maior e mais complexa articulação do corpo. E
vulnerável em atletas e supostamente também em não-atletas.
Investigadores finlandeses relataram recentemente que em homens e
mulheres a articulação do joelho é o local mais comum de lesão
desportiva que requer cirurgia, e que a freqüência em mulheres é
significativamente mais alta que em homens. O movimento do joelho é
denominado por flexão e extensão, mas normalmente ocorre nos planos
sagital, frontal e transversal. Três articulações compõem o joelho:
duas tibiofemorais e a patelofemoral.
As
duas primeiras são os locais onde os côndilos femorais medial e
lateral fazem contato, através de cartilagem articular interposta, com
a face articular superior da tíbia. A articulação patelofemoral é
composta pelas face articular da patela e face patelar do fêmur. A
patela é um osso sesamóide, que se caracteriza por seu desenvolvimento
dentro de um tendão, neste caso o tendão do músculo quadríceps da
coxa.
A
maioria dos casos de luxação do joelho é na verdade uma luxação da
patela.
A
cápsula articular do joelho à diferença de outras articulações,
não forma uma estrutura envolvente completa da articulação. Os poucos
ligamentos capsulares verdadeiros que conectam os ossos são auxiliados
por tecidos tendíneos dos músculos associados à articulação. O
ligamento da patela é a continuação do tendão do músculo
quadríceps da coxa clistal à patela. É extremamente forte e segue da
patela para a tuberosidade da tíbia. Resiste à tendência da face
tibial superior de deslocar-se para frente com referência ao fêmur
durante alguns tipos de movimento.
Outras
estruturas ligamentosas importantes que servem para estabilizar a
articulação do joelho incluem OS ligamentos poplíteo oblíquo,
poplíteo arqueado, colaterais medial e lateral e cruzados anterior e
posterior.
Os
meniscos medial e lateral desempenham um importante papel a função do
joelho. Auxiliam diretamente a estabilização da articulação,
aprofundando as faces articulares da tíbia, servindo como fonte de
absorção de choque e transmissão de forças ao aumentar a área de
superfície articular, aumentando a eficiência da lubrificação
articular e fixando-se aos 05505 e outros tecidos moles das
articulações que restringem alguns tipos de movimento.
16.6.1.
Movimentos articulares
O
movimento da articulação do joelho, embora mensurável ao redor dos
três eixos, é dominado por flexão e extensão no plano sagital. A
amplitude movimento da extensão completa (0º) à flexão completa é
de aproximadamente 140º. O movimento do joelho no plano transversal
acompanha tipicamente a flexão e extensão e é referido como rotação
tibial e medial e lateral.
O
movimento no plano transversal é uma função da posição do joelho no
plano sagital. Nenhuma rotação do joelho é permitida quando o joelho
está completamente estendido; contudo, até 45º de rotação lateral e
30º de rotação medial são possíveis quando o joelho está fletido
até 90º. Na extensão completa, a rotação é restrita pela
arquitetura óssea da articulação, enquanto além de 90º de flexão o
movimento é limitado pelos tecidos moles esticados ao redor da
articulação.
Costigan
e Reid descreveram a rotação tibial durante excursões de flexão e
extensão do joelho. Essas ações simultâneas são importantes no
movimento normal do joelho. Mediu-se o torque radial no joelho e
verificou-se que este é uma função da posição do pé. A menor
quantidade de torque dirigido lateralmente foi encontrada quando o pé
estava girado lateralmente em 17º. Costigan e Reid verificaram que há
de fato uma posição do pé, maior que 17º mas menor que 50º, na qual
o torque radial no joelho é reduzido a zero; esta posição varia entre
indivíduos e tem implicações para exercícios como o agachamento com
pés paralelos e saltos verticais, que exigem flexões dos joelhos e
extensões do membro sustentador do peso.
16.6.2.
Músculos da articulação do joelho
Doze
músculos atuam na articulação do joelho e são classificados em três
grupos: o jarrete, o quadríceps da coxa e músculos não-classificados.
O grupo do jarrete inclui os músculos semitendíneo, semimembranáceo e
bíceps da coxa.
O
quadríceps da coxa é constituído pelos músculos reto da coxa e três
vastos - vasto lateral, medial e intermédio.
O
grupo de músculos não-classificados da articulação do joelho inclui
o sartório, o grácil, o poplíteo, o gastrocnêmio e o plantar. Os
dois últimos músculos atuam predominantemente na articulação do
tornozelo, embora passem atrás da articulação do joelho e possuam
alguma capacidade de flexão.
16.6.3.
Mecanismo de bloqueio do joelho
Normalmente,
quando o joelho está completamente estendido numa posição ereta
normal, a linha de gravidade passa na frente do ponto de contato
tibiofenural. Assim, o joelho é mantido em extensão pelo torque
gravitacional. Devido à disparidade nos diâmetros dos côndilos
femorais medial e lateral e dos meniscos correspondentes, a contração
continuada do quadríceps da coxa pode, e é necessária para causar
rotação lateral do fêmur sobre a tíbia. Esta rotação faz com que o
fêmur se assente mais intimamente nos meniscos no que foi denominado um
movimento de "encaixe em parafuso".
16.6.4.
Considerações mecânicas sobre as lesões do joelho
As
entorses do joelho resultam de movimentos que ultrapassam os limites
normais da articulação. Quando forçados além dessa restrição
natural, os ligamentos podem ser submetidos a uma tensão superior a seu
limite elástico, colocando-os na região plástica de sua curva de
carga-extensão. O resultado é uma deformação permanente dos
ligamentos, cuja magnitude depende da força aplicada. No joelho, a
entorse ligamentosa pode ocorrer em qualquer direção de movimento. No
tipo talvez mais comum de lesão do joelho, freqüentemente visto no
campo de futebol americano, o pé é fixado e o fêmur gira medialmente
com referência à tíbia, que ao mesmo tempo gira lateralmente. Todo o
joelho é deslocado medialmente, resultando em tensão ligamentosa
medial. Quando a força é continuada, o ligamento cruzado anterior e,
por fim, o cruzado posterior são submetidos à tensão. A "tríade
infeliz" refere-se a uma lesão que afeta simultaneamente o
ligamento colateral medial, ligamento cruzado anterior e menisco medial.
Uma
entorse intensa é o precursor da luxação do joelho patelofemoral ou
tibiofemural. Um fator anatômico que predispõe um indivíduo à
luxação patelofemoral é um ângulo anormal. O ângulo Q é o desvio
entre a linha de tração do quadríceps da coxa e o ligamento da
patela. Geralmente é medido como o ângulo entre a linha da espinha
ilíaca ântero-superior e o centro da patela e a linha do centro da
patela à tuberosidade da tíbia.
Um
ângulo Q de 10º é considerado normal. Ângulos maiores podem resultar
em luxações laterais da patela quando a contração do quadríceps
reduz o ângulo.
De
gravidade bem maior e, felizmente, menos comum, é a luxação
tibiofemural.
A
lesão de meniscos geralmente é simultânea à entorse ligamentosa. Os
mecanismos de lesão dos meniscos medial e lateral diferem.
Os
atletas freqüentemente sentem uma dor ao longo da perna que chamam de
shin splints e existem várias teorias acerca da causa da incapacidade e
parece ser uma condição epidêmica entre dançarmos, corredores, etc.
As
lesões de esqui são comuns e muito instrutivas para o cinesiologista.
Envolvem dois fatores - fixação e intensificação - e três
movimentos - rotação lateral, queda para a frente e rotação medial.
Uma lesão ocorre apenas se os dois fatores e pelo menos uma das forças
estiverem presentes. A fixação se dá quando um esqui se toma fixado,
por sua vez, segurando o pé preso ao esqui.
Se
as presilhas do esqui não se soltarem e uma grande quantidade de
energia cinética estiver presente, um esforço de torção é exercido
através de rotação lateral. Esse mecanismo mais comum de lesões do
esqui produz fratura do maléolo lateral, fratura espiral do tornozelo
e/ou tíbia, ou entorse do joelho e tornozelo.
Quando
a ponta de um esqui penetra na neve, sobrevêm uma desaceleração
abrupta, projetando o esquiador sobre o cano de suas botas. Pode ocorrer
uma fratura pelo cano da bota, laceração do tendão de Aquiles e
luxação dos tendões fibrilares.
A
rotação medial é causada pelo cruzamento da ponta de um esqui com a
ponta do outro. As conseqüências podem ser entorse do tornozelo,
lesão do joelho, fraturas do maléolo medial e fraturas espirais da
tíbia.
Os
exercícios que fazem com que o joelho sustentador de peso seja
completamente fletido foram condenados como potencialmente perigosos
para as estruturas de suporte do joelho.
O
impedimento da rotação do pé fixado nessa situação causa maior
tensão sobre os ligamentos e cartilagens do joelho.
A
solução para essa prática perigosa é limitar o grau de flexão dos
joelhos, como nos exercícios de agachamento paralelo.
17.
TORNOZELO E O PÉ
A
articulação do tornozelo consiste nas articulações talocrural
(tibiotalar e talofibular) e tibiofibular distal. É classificada como
uma sinovial em dobradiça em virtude de sua arquitetura óssea, um
sistema de ligamentos colaterais medial e lateral, a cápsula articular
e a parte distal da membrana interóssea. A articulação do tornozelo
é crucial na transmissão de força do corpo e para o corpo durante a
sustentação de peso e outras cargas.
As
magnitudes dessas forças podem ser tão grandes, até 10 vezes o peso
corporal durante alguns tipos de corrida, por exemplo, que até mesmo
pequenos desalinhamentos estruturais, ou lesões podem acarretar
problemas ortopédicos crônicos e intensos.
A
transmissão de forças se dá na junção da extremidade distal da
tíbia e face superior do tálus; a fibula exerce um papel pequeno.
Arquiteturalmente,
um encaixe ou abertura provida de borda, é formado pelos maléolos da
tíbia e da fíbula no qual a face superior do tálus se ajusta.
Essa
estrutura é uma importante fonte de estabilidade para a articulação
do tornozelo.
Os
principais ligamentos que sustentam a articulação incluem a parte
distal da membrana interóssea a cápsula articular, ligamento deltóide
(medialmente) e ligamento calcaneo-fibular (lateralmente), os quatro
últimos são considerados ligamentos colaterais.
O
gínglimo biaxial permite uma flexão de aproximadamente 45º conhecida
como dorsiflexão e uma extensão de 45º conhecida como flexão
plantar. Várias populações obviamente demonstram valores bem maiores.
Em geral os primeiros 10 a 20º são definidos como dorsiflexão, o
movimento restante é definido como flexão plantar.
17.1.
ARTICULAÇÃO SUBTALAR
A
articulação subtalar, uma sinovial plana entre a face interior do
tálus e a face superior do calcâneo, é considerada uma das
articulações intertársicas. O movimento do pé através da
articulação subtalar pode ser modelado representando-se o tornozelo
(classificado anatomicamente como um gínglimo) como uma articulação
esferóide. O gínglimo uniaxial do tornozelo combinado com o eixo da
articulação subtalar permite efetivamente ao pé três eixos de
rotação.
Sammarco
relatou que o eixo da articulação subtalar está a cerca de 420 do
calcanhar, dirigido para a frente e para cima (a 38º da vertical) e a
16º medialmente d o eixo longitudinal do pé.
A
articulação subtalar permite essencialmente dois movimentos,
independentes do movimento na articulação do tornozelo. A inversão do
pé ocorre quando a planta é virada medialmente, e a eversão do pé
quando a planta é virada lateralmente.
A
eversão e inversão são às vezes referidas como pronação e
supinação, respectivamente. A eversão freqüentemente ocorre com
dorsiflexão e abdução (rotação lateral do pé), ao passo que a
inversão pode ocorrer com algum grau de flexão plantar e adução
(rotação medial).
Em
geral, a amplitude de movimento demonstra uma média de 20º de
inversão e 5º de eversão.
17.2.
ARTICULAÇÃO TRANSVERSA DO TARSO
A
articulação transversa do tarso (mediotársica) pode ser considerada a
junção entre as articulações talonavicular, triaxial e
calcaneocubóidea, biaxial.
Os
ossos navicular e cubóide se articulam de tal modo que permitem apenas
um leve movimento e portanto, podem ser considerados um único segmento.
Vista por cima, a articulação transversa do tarso forma uma linha em
forma de S.
A
articulação permite movimentos da parte anterior do pé com
referência à parte posterior.
São
permitidos dois tipos de movimento através de dois eixos. O eixo em
torno do qual ocorrem a inversão e eversão é orientado com o eixo
longitudinal do pé, subindo de trás para a frente a partir da face
plantar do pé a um ângulo de 15º e dirigido medialmente a um ângulo
de 9º.
O
movimento em torno desse eixo permite que o pé se adapte a uma
variedade de orientações da superfície durante a locomoção.
Um
segundo eixo que sobre de modo semelhante ao primeiro, mas a um ângulo
de 52º, dirige-se medialmente a um ângulo de 57º. Esse eixo de
rotação aumenta a dorsiflexão e flexão plantar. A orientação dos
eixos e por conseguinte do movimento é variável e influenciada pela
arquitetura do pé da musculatura que atravessa as articulações.
O
movimento do pé distal à articulação transversa do tarso, pertence
às articulações intertársicas e tarsometatársicas. Em ambos os
casos, o movimento restringe-se a uma dorsiflexão quase desprezível e
a 15º de flexão plantar. Os dedos se movem em flexão e expansão em
torno das articulações metatarsofalângicas (sinoviais em dobradiça).
O
movimento em torno das articulações metatarsofalângicas inclui a
abdução e adução. O hálux ou dedão tem uma amplitude de flexão de
30º e uma amplitude de extensão de 90º. Os demais dedos tem uma
amplitude de flexão um pouco maior, 50º.
17.3.
MUSCULATURA DA ARTICULAÇÃO DO TORNOZELO E DO PÉ
A
parte do membro inferior entre o joelho e a articulação do tornozelo
é o local de origem para os músculos que produzem movimento do
tornozelo. Estes músculos são classificados em três grupos - crural
anterior, cervical posterior e crural lateral.
Dos
músculos associados ao tornozelo e pé, 12 são extrínsecos ao pé e
19 intrínsecos.
17.3.1.
Crural anterior
Os
músculos crurais anteriores estão associados ao compartimento anterior
que é limitado pela tíbia e septo intermuscular.
O
tibial anterior geralmente é considerado um inversor do pé
(articulação subtalar), embora alguns pesquisadores tenham relatado
que ele não é ativo durante a inversão, a menos que ocorra
dorsiflexão simultaneamente.
É
razoavelmente bem aceito que o tibial anterior não desempenha qualquer
papel na sustentação estática normal do arco longitudinal do pé.
Durante
condições com cargas dinâmicas, entretanto, a contração muscular
auxilia a fonte primária de sustentação do arco, as estruturas
osteoligamentosas. Os indivíduos com pés planos também necessitam de
sustentação muscular dos arcos, especialmente pelo tibial anterior.
17.3.2.
Crural posterior
Os
músculos do grupo crural posterior são ainda classificados em
superficiais ou profundos. O grupo superficial, o gastrocnêmio, e
sóleo e o plantar. O grupo profundo é composto pelo poplíteo, flexor
longo do hálux, flexor longo dos dedos e tibial posterior.
As
duas cabeças do gastrocnêmio e o sóleo são referidos como triceps da
perna.
Os
músculos que compõem o grupo profundo são o poplíteo, o flexor longo
do hálux, como o nome diz atua principalmente na flexão do hálux,
inserindo-se na base da falange distal.
O
flexor longo dos dedos cujo tendão se divide em quatro tendões
separados que fixam nas bases das quatro falanges distais.
A
afirmativa de Soderberg, de que se sabe pouco sobre o tornozelo e o pé
é correta, tendo em vista a controvérsia que envolve as ações do
flexor longo do hálux e o flexor longo dos dedos.
Gray
indicou que o flexor longo do hálux contribui significativamente para a
propulsão do pé durante a marcha; contudo, Frenette e Jackson
relataram que, embora não seja essencial nesse papel, o músculo é
crucial na manutenção do equilíbrio durante a posição ereta.
17.3.3.
Crural lateral
Dois
músculos compõem o grupo crural lateral, os fibulares longo e curto.
Um septo intermuscular separa esse grupo dos grupos anterior e
posterior. Ambos os músculos passam atrás do maléolo lateral para
suas inserções na face plantar do pé.
Auxiliam
a flexão plantar, embora suas principais contribuições sejam para a
pronação do pé (eversão e abdução combinadas).
17.4.
CONSIDERAÇÕES MECÂNICAS SOBRE AS LESÕES DO TORNOZELO E DO PÉ
As
lesões da articulação do tornozelo são o traumatismo mais comum em
esportes. Funcionalmente a articulação em dobradiça sinovial permite
apenas a dorsiflexão e flexão plantar.
Um
movimento extremo em qualquer uma das duas direções pode ser lesivo
mas é menos freqüente do que o movimento causado por forças dirigidas
lateralmente que resultam em inversão ou eversão.
As
lesões por inversão são responsáveis por 85% de todas as lesões do
tornozelo. Em relação ao eixo da perna, as lesões por inversão
também compreendem forças de adução e flexão plantar. Se o
deslocamento articular é intenso o bastante para lacerar parcial ou
completamente ligamentos de sustentação, a face medial do tálus
avança sobre o maléolo medial sobre o qual gira. Desse modo, os
ligamentos laterais são submetidos a tensão e, caso a inversão
continue, o maléolo medial pode sofrer uma fratura em geral numa
direção vertical.
Nas
lesões por eversão, o maléolo lateral que é mais longo que seu
equivalente medial, torna-se sobrecarregado quando o pé se move
lateralmente com referência à tíbia e também se abduz e se
dorsiflete.
O
maléolo lateral impede que o tálus gire. Ao invés, o avanço do
tálus sobre o maléolo lateral causa uma tensão extrema no tálus
antes de traquinar os ligamentos mediais. Sobrevém comumente uma
fratura fibular, às vezes com lesão do ligamento deltóide, situado
medialmente. A lesão dos ligamentos laterais é possível se o
deslocamento da articulação prosseguir.
Johnson,
Dowson e Wright relataram as diferentes influências de sapato de cano
longo e curto sobre as lesões da articulação do tornozelo. Como se
esperava, eles constataram que os sapatos de cano longo reduzem a
tensão sobre os ligamentos colaterais durante a inversão e versão,
tornando esse tipo de sapato mais seguro. Entretanto, como os sapatos de
cano longo são mais pesados, eles são usados freqüentemente.
Constatou-se
que os sapatos de cano curto têm o potencial de causar maior lesão
ligamentosa, se o material for mecanicamente duro devido à restrição
imposta ao movimento da articulação subtalar. Os autores recomendaram
que, caso os sapatos de cano curto sejam usados, eles devem ser o mais
flexível possível ao redor da articulação do tornozelo.
CONCLUSÃO
Sendo
assim, a biomecânica é definida como a aplicação de princípios de
engenharia a sistemas biológicos, ou o estudo de forças internas e
externas geradas por, e atuantes sobre sistemas biológicos e dos
efeitos dessas forças sobre cada parte do organismo humano.
A análise e avaliação do movimento humano, contudo, não necessariamente
incluem contribuições de todos esses fatores. No entanto, boa parte
deles são essenciais para o bom funcionamento das estruturas que formam
o corpo lhe proporcionando um melhor desempenho e de forma eficiente. |